Original Research Article I Volume 2 I Issue 2 I 2014

GENETIC ENGINEERING TO EXPRESS METAL BINDING PROTEINS AND PEPTIDES: IMPLICATIONS FOR BIOREMEDIATION

Pattanayak, B; Padhi, S; Dhal, N.K

Biolife; 2014, 2(2), pp 442-451

DOI:https://doi.org/10.5281/zenodo.7203882

Abstract:

Plants and microbes respond to heavy metal toxicity in different ways. Such responses include immobilization, exclusion, chelation and compartmentalization of the metal ions and the expression of more general stress response mechanisms such as ethylene and stress proteins. Understanding the molecular and genetic basis for these mechanisms will be an important aspect of developing plants as agents for the phytoremediation and microbes for bioremediation of contaminated sites. One recurrent general mechanism for heavy metal detoxification in plants and other organisms is the chelation of the subsequent compartmentalization of the ligand-metal complex

Keywords:

Phytoremediation,Bioremediation,Detoxification,Metallothioneins,Phytochelatins.

References:

1.      Berka, T., Shatzman, A., Zimmerman, J., Strickler, J. and Rosenberg, M., 1988. Efficient expression of the yeast metallothionein gene in Escherichia coli. Journal of Bacteriology. 170(1): 21–26.

2.      Broeks, A., Gerrard, B., Allikmets, R., Dean, M. and   Plasterk R.H. 1996. Homologues of the human multidrug resistance genes MRP and MDR contribute to heavy metal resistance in the soil nematode Caenorhabditis elegans. European Molecular Biology Organization Journal. 15:6132–6143.

3.      Chen,J.and Goldsbrough, P.B. 1994. Increased activity of g-glutamylcysteine synthetase in tomato cells selected for cadmium tolerance. Plant Physiology.106: 233–239.

4.      Chen, J., Zhou, J., Goldsbrough, P.B., 1997. Characterization of phytochelatin synthase from tomato. Plant Physiology. 101: 165–172.

5.      Clemens, S., Kim, E.J., Neumann, D. and Schroeder, J.I. 1999. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. European Molecular Biology Organization Journal. 18: 3325–3333.

6.      Cobbett, C.S., May, M.J., Howden, R. and   Rolls, B., 1998. The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in g glutamylcysteine synthetase. Plant Journal. 16:73–78.

7.      Dameron, C.T., Reese, R.N.,  Mehra, R.K.,  Kortan, A.R.,  Carroll, P.J.,  Steigerwald, M L., Brus, L.E. and  Winge, D.R. 1989. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature. 338: 596–597.

8.      Dorhalc, F.D., Elmayan, T., Deroton, C.H., Tepfer, M. and   Dehys, L., 1998.Cadmium partitioning in transgenic tobacco plants expressing a mammalian metallothionein gene. Molecular Breeding. 4:83–90.

9.      Delhaize, E.P. and Ryan, R., 1995. Aluminum toxicity and tolerance in plants. Plant Physiology.107: 315–321.

10.  Elmayan, T., and Tepfer, M., 1994. Synthesis of a bifunctional metallothionein β-glucuronidase fusion protein in transgenic tobacco plants as a mass of reducing leaf cadmium levels. Plant Journal. 6: 433-440.

11.  Fordham-Skelton, A.P., Robinson, N.J. and Goldsbrough, P.B., 1998. Metallothionein-like genes and phytochelatins in higher plants. In S Silver, W Walden, eds, Metal Ions in Gene Regulation. Chapman & Hall London. pp 398–431.

12.  Grill, E., Loffler, S., Winnacker, E.L. and Zenk, M.H., 1989. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific g-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proceeding of the National Academy of Sciences USA.86: 6838–6842.

Article Dates:

Received: 2 April 2014; Accepted: 19 May 2014; Published: 7 June 201

How To Cite:

Pattanayak, B, Padhi, S, & Dhal, N.K. (2022). GENETIC ENGINEERING TO EXPRESS METAL BINDING PROTEINS AND PEPTIDES: IMPLICATIONS FOR BIOREMEDIATION. Biolife, 2(2), 442–451. https://doi.org/10.5281/zenodo.7203882

Download Full Paper: PDF

Logo


Logo